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UENCE RADII FOR INTERPOLAT1 
F SUCCESSIVE CORRECTIONS' 

J. j. STEPHENS and J. M. SnTB2 

Flcrida State University, Tallahassee, Ha. 

A method of selecting optimum influence radii for the objective analysis of a scalar field using thc method of 
successive corrections is presented for an arbitrary weight function. The Cressman weight function is used in a com- 
putational verification of the result. 

A well-defined first pass optimum radius is found that increases with station separation, observational error, and 
wavelength of the true field for the average taken as the guess field. 

As introduced by Cressman (1959), the method of suc- 
cessive corrections interpolates observational discrepancies 
from a guess field at  station locations to find estimates a t  
points of a regular net. The interpolation is accomplished 
by a linear combination of the point discrepancies within 
some influence radius about the mesh point. The relative 
weight accorded each observation depends on its distance 
from the mesh point, as well as the number and distance 
of all other stations in the influence area through the 
normalization procedure. Several scans employing different 
influence radii are usually made in application with the 
choice of influence radius for a given scan based on a sub- 
jective judgment of the resulting analysis. 

As shown by Gandin (1965) and Eddy (1967), the choice 
of weight function should depend on the field statistics. 
However, some success has been found with analytic 
functions that determine the form of the distance weight- 
ing. The influence radius must be specified. 

A method of choosing influence radii in an optimum 
(least-squares sense) way for arbitrary scalar fields and 
weight functions is presented here for a simple statistical 
model of the data array. I t  is shown that the optimum 
radius for large signal-to-noise ratios is primarily depend- 
ent upon the average station separation. The variance 
spectra of the true and error fields are important for 
noisy observations. The results are illustrated with model 
fields of signal and error. 

Estimates on the net are generated by a correction 
formula of the type 

where .Z& denotes the grid point estimate at  (jAk, k A y )  
Zo the irregularly distributed sample of the observed 
field, and Zg the guess field. The weight function w, is 
normalized to unity by 

where M is the number of stations within the influence 
radius R. The unnormalized weight W(r,,R) is associated 
with the mth ordered station whose coordinates are r ,  
and e, in a local polar coordinate system with origin at 
( j A z ,  kAy). I t  has been presumed that zo=yo=O without 
loss of generality. 

To some extent, the analysis depends on the character 
of the guess field. Here, it is assumed that the fmt scan 
begins with a guess field taken to be the average of the 
observed values. - -  Further, if ZT denotes the true field, 
the assumption Zo=ZT is made. The observed field 
differs from the true field by 

where e is the observational error with zero mean. The 
grid point estimate is in error by 

Z!. ,-G, k=% k. (4) 

If Z'=ZT-F and the station locations are identified 
by the subscript m, then the total error at  a grid point 
after the first pass is 

Ad 

m= 1 
b=--Z; . t+c W,(TW&, R, rn{Zla+~rn~. ( 5 )  

With minimal restrictions, the true field deviation can 
be represented by 
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rectangular domain of dimensions L, X L,. Because of 
observational sampling limitations, a band-limited true 
field could be assumed. A similar representation is used 
for the error field: 

While equation (8) is a typical example, the relative 
station locations differ from point to point. This vari- 
ability is removed here by assuming that the M station 
sites are randomly distributed within the influence area. 
Then T,  and 8, are random variables with associated 
probability densities p,(r,) and j,(8,) , respectively. 
The average of the weight for each station is then deter- 
mined by averaging its location over all possible values. 
Since all stations in the domain may appear within the 
influence area for a particular realization of the data 
array, all must be considered. The total number of stations 
in the domain is denoted by N. 
AU values of 8, in (- T,T) are equally likely for a random 

data distribution. Since 

where Jo is the Bessel function of the first kind and order 
zero and 

Ki = .\ilzK: + K ~ K  i, (10) 

the grid point estimate for average station location is 

As implied by their dependence on N,  the relative weights 
w,(r,,R,N) as well as Iz. (m,R,N) and gcK(R,MIN) are 
taken to be functions of all the average distances from 
the mesh point to the stations. 

The averaging above essentially determines the average 
weight for each of the ordered stations. It does not prop- 
erly account for the probability that a station may not 
be within the influence area. For instance, there is a finite 
probability P,{T,<IZ) that the most distant station is 

within the influence radius. Consequently, the discrepancy 
is taken to be 

where the notation 

has been introduced. Here, 6 j , k  (N-1)  is the discrepancy 
to be expected when the Nth station is not in the influence 
area in a probabilistic sense. Similar considerations for 
the (N-  1 )  th station lead to 

6 j , k ( N -  1 )  = (1 -P~-1)8 j ,k(N-2)  +p,-,Fj.<-'). (16) 

After all the ordered stations are considered sequentially, 
the discrepancy for the closest station is 

(17)  4, k( 1) = ( 1  --PI 1 { -2;. k 1 +P,F,"', 

since the discrepancy is -Zi, if the first station is outside 
of €2. These can be combined to write 

The form of the probability weighting H ,  obtained by 
direct substitution is 

N-1 N 
Hm=PN+C j=m Pj l=j+l (l-pc). (21) 

Since HmwPp,, the form suggested by (20) is preferred. 
In  the examples shown below, stations are included if 
P, 20.005.  

Clearly, the distance to  the mth ordered station depends 
on the location of the (m-1)th station. Hence, pm(r,) 
should be a joint probability density. However, the 
essential behavior of the discrepancy is retained by 
treating the p,(~,) as independent distributions. Their 
behavior is discussed further below. 

The domain of interpolation is divided as Lz= JAx and 
L,=KAY to form the mesh. The variance of the inter- 
polation error is 

or 
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when (18) is incorporated. If it is assumed that the error 
component is uncorrdated with any other field, then the 
grid point error variance for the f k t  pass reduces to 

Before considering particular examples of (24), it will 
be useful to develop an interpolation error relation when 
a nontrivial guess field is provided. In  particular, the guess 
field taken is that whose grid point discrepancy 6:;; is 
given by (18). On the second pass, the interpolation error is 

(25) 
N 

m = l  
s?i=sjfk+22 wn(rm, -%, .w> I em-61111) 1 

where I&, is the second pass influence radius. In practice, 
the deviation at a station is given by a linear combination 
of the four surrounding grid points. In  this analysis, 
the corresponding station discrepancy is found by taking 
the centroid of the mesh area as the station location. If 
equation (18) is written as 

then (26) evaluated at  the surrounding mesh points and 
averaged Beads to 

(28) 

The observational error is treated as in the first pass. 
After averaging the station locations and accounting for 
the sampling discreteness, the expected value of the second 
pass discrepancy is 

(29) 

where G,(:) M e r s  from Bzx o d y  in that the latter is 
evaluated for the optimum influence radius for the first 
pass. 

The discrepancy variance for uncorrelated observa- 
tional error is 

Equations (24) and (30) constitute models of the emor 
variances to be expected on the first and second passes 
principally in that the error field is presumed to be un- 
correlated and the distribution of observing sites is random. 
The variances suggested by (24) and (30) will be com- 
pared to more realistic examples after specifiying details 
ob the error field and determining the distance probabaty 
distribution. 

3. DISTANCE DlSTRBlBUTlO 

Empirical probabdity densities for the spacing of 
randomly distributed stations away from a grid pob t  
are used here. For discussing them, it is convenient to 
introduce several parameters. 

The average station density, i, is defined by tho ratio 

- N  “3 

where N is the total number of stations in the area A. 
An operational definition of the average station separation, 
d ,  is determinod by regarding A in terms of an equivalent 
rectangular area divided into N equal, square cells. It 
follows that q=l/d2. 

b o t h e r  important length scale is obtained by consider- 
ing the number of stations I(p) within a radius p about an 
arbitrary point in the field: 

- 

If attention is sestnicted to integers I(pm) =m, then 

Here, pm is the average distance to the mth ordered 
station. 

Empirical distributions were determined by generating 
station locations in the plane with a pseudorandom number 
generator. Five such realizations were found for each of 
several station densities. A 21 X 21 point grid was placed 
in the region for each realization. The distances to the 
closest 10 stations weFe stratified according to radius 
interval for each grid point. The average distribution for 
all grid points and realizations is well represented by the 
Pearson type HI1 probability density (Zelen and Severo 
1964) in the form 

(34) 

provided the distribution parameters a! and B satisfy 

(35) 
1 

3m”/”(d/&) 4 = 1 -  

and 

Here, r(a) is the gamma function. The arbitrary forms in 
(35) and (36) as well as the numerical factors and ex- 
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ponents were chosen to match the observed mean and 
variance. The behavior with d is as suggested by obser- 
vation. All distances are expressed in units of +. 

4. COMPUTATIONAL ILLUSTRATIONS 

The weight function chosen to illustrate the formulation 
is that due to Cressman (1959): 

(37) 

The distance influence functions were evaluated with 
20-point Gaussian quadrature. As indicated by integrals 
of the probability density, better than three significant 
figure accuracy was obtained for the results reported 
here, except as noted. 

As an initial test of the theory, 20 random station 
arrays with d = 2.8 A x  were generated, and the analytic 
field 

Z’(x, y)=A cos($!$ (38) 

was evaluated at  each station location. Errors drawn 
from a normal distribution with a variance 1/250 of the 
field variance were then added to the "observations." 
These were treated as band-limited white noise in the 
model. Interpolated values of a 21x21  point net were 
found for each of the 20 realizations using the method of 
successive corrections. The average and envelope of the 
interpolation results are shown in figure 1. The optimum 
influence radius for thc experimental average occurs at 
R/d-1.6 for this field. Smaller values are indicated for 
the maximum and theory. In  general, the theoretical 
results given by equation (24) presume a better utiliza- 
tion of data for small R than might be obtained for an 
“average” array under the least-squares criterion. As 
shown below, however, thc results for a particular station 
array may differ markedly. Although the intcrpolation 
error at  the optimum radius may differ significantly with 
each array realization, the choice R-1.6d leads to  
negligible difference in the error for a given array and 
for this field. Both the observational average and theory 
suggest that the influence radius should be overestimated, 
rather than underestimated. 

The average of 20 station army realizations represents 
a homogeneous data distribution. In such a case, there is 
excellent agreement between theory and observation for 
large R. The observed optimum radius varies with the 
particular realization; it may be larger or smaller than 
the theory predicts. 

The grid and station array shown in figure 2 wasused 
to illustrate typical results for an essentially homogeneous 
data array. In addition to equation (38), the field 

2’ (x,y) ==A sin ~ 

G Y X )  (39) 

was evaluated at thc stations. In  this case, no errors were 
added so that the discrepancies are due to interpolation 
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FIGURIC 1.-Theoretical and experimental normalized interpolation 
discrepancy variances far an ensemble of randomly distributed 
station arrays. 

error alone. Comparisons of the actual and predicted grid 
point discrepancies after two passes are shown in figures 
3 and 4. Again, the predicted results arc obtained from 
equations (24) and (30). While the actual f i s t  pass 
interpolation shown in figure 3 is more accurate than 
thc theory suggests, there is cxcellent correspondence 
between the optimum radii. As before, the large-radius 
agreement for homogcneous data distributions might be 
noted. In  view of the logarithmic scale, thc second pass 
discrepancies are in substantial agreement. It was found 
experimentally that the optimum influence radius for thc 
second pass was less than that for the first pass, provided 
that the average was used for the first pass guess field 
and that the second pass begins with the optimum first 
pass results. Theory suggests a smaller error and a less 
well-defined optimum radius for the second pass. 

The results shown in figure 4 for a wavelength of 60 
A x  once again show a smaller first pass experimental 
error. A larger influence radius is indicated for the model. 
The second pass theory is again too optimistic. 

The same fields were evaluated for the array shown in 
figure 5. The station distribution is a realistic one in that 
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FIGURE 2.-Grid and station array for an essentially homogeneous data distribution. 

a data void exists beyond the oceanic boundary. The 
largest of the errors summarized in figures 6 and 7 are in 
the data void. This leads to a greater discrepancy variance 
and a larger influence radius than result from a more 
homogeneous array. 

The existence of a well-defined first pass optimum in- 
fluence radius depends primarily on the balance of the 
decrease due to the inclusion of additional stations and the 
increase in interpolation error with increasing distance. 
While most applications of successive corrections would 
be to fields with large signd-to-noise ratios, it is of interest 
to  note the variation with a substantial increase in the 
noise level. As shown in figure 8, as the observational 
error variance is increased to match the field variance, the 
discrepancy increases, as does the optimum influence 
radius. For a noisy field, the contribution of the error of 
observation decreases with increasing influence radius as 
more samples are included. The presence of additive, ran- 
dom noise does not significantly affect the results for a 
wavelength of 20 A x  and a sampling interval of 2.8 Ax.  

As expected, the optimum influence radius increases 
with station separation, along with the corresponding 
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\ 
FIGURE 4.-Theoretical and experimental normalized discrepancy 

variances for a homogeneous data distribution. A one-dimensional 
true field and an average station separation of 3.3 A z  have been 
used. 

FIGURE 5.-Grid and station array for a biased data distribution. 
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FIGURE 6.-Theoretical and experimental normalized discrepancy 
variances for a biased data distribution. A two-dimensional field 
with error has been used. 
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with error has been used. 
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FIGURE S.-Theoreticai normalized discrepancy variance for three 
noise levels. A one-dimensional field with an average station 
separation of 2.8 A s  has been used. 

interpolation error. This is shown in figure 9. The large- 
radius results indicate that as the influence radius exceeds 
one-half wavelength the error is greater for smder  separqt- 
tions. However, this periodic behavior was not explored 
further. As suggested by the dashed results for d= l  Ax, 
the computations are not suEcientlgr accurate for large 

The variation with wavelength is illustrated in figure 
10 for a separation d=2.8 Ax. Computations for wave- 
lengths Pws than 20 Ax suggest that the limiting optimum 
radius for the shortest defhable wave is the averagedis- 
tance to the closest station. Within the computational 
accuracy, the long-wave limit appears to be an optimum 
radius of twice the average station separation. Thus, if the 
signal-to-noise ratio, is large, the eflective range of opti- 
mum radii satisfies the approximate inequality 1<B/d<2. 
Although any field is permitted with the theoretical model, 
a satisfactory optimum radius can be obtained from figure 
10 with an approximate knowledge of the field spectrum 
and a suitably adjusted station density. If K~ is the relative 
contribution of the j th  spectral component and e,@) the 
corresponding interpolation error, the optimum Ik is deter- 
rained by minimizing the quantity 

Bid. 

with respect to 8. 
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FIGURE 9.-Theoretical normalized discrepancy variance for four 
station separations. A onedimensional true field with an average 
station separation of 2.8 A% has been used. 

5 

FIGUBE 10.-Theoretical normalized discrepancy variance for five 
onedimensional waves. An average station separation of 2.8 A% 
has been used with no error. 
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5. CONCLUSIONS 
Although variations are found for different arrays, 

there is substantial agreement between the experimental 
and model discrepancy variances presented here. As ex- 
pected, the optimum influence radius increases with data 
separation and observational error. First pass results for 
one-dimensional monochroma tic fields with the average 
used as a guess field suggest that 1<R/d<2. Because a 
particular guess field was used, the second pass has not 
been explored extensively. Although the optimum for the 
second pass is not as well defined as that for the first, 
experiment suggests a smaller value. 

If the average is used as a guess field, an optimum 
first pass radius can be estimated. Otherwise, the model 
can accommodate arbitrary guess and true fields in the 
presence of random noise. The theory for an arbitrary 
guess field would proceed from the formulation for the 
second pass used here. 

In  addition to the determination of optimum influence 
radii for the method of successive corrections, the analysis 
technique employed here can be used to determine the 

properties of other arithmetic operations applied to 
data distributed randomly in two dimensions. 
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